NASA Technical Memorandum 86326

{NASA-TM-B6326) A NEW IMELEMENTATION CF THE N87~-18330
EFCGEAMMING SYSTEM FOK STRUCIUERAL SYNTHESIS
(EBRCS5S-2) (NAS]H) 36 p CSCL 09B

Unclas

G3/61 43375

/-G |

A NEW IMPLEMENTATION OF THE PROGRAMMING SYSTEM FOR - ;Z;fsr"/
STRUCTURAL SYNTHESIS (PROSSS-2) 55223 /

Dn7e OYEe&sd &

Iﬂ/ 1%

James L. Rogers, Jr.

NOVEMBER 1984

November 30, 1986

" Date for general release

NASA

National Aeronautics and’
Space Administration

Langley Research Center
Hampton, Virgima 23665

A NEW IMPLEMENTATION OF THE PROGRAMMING SYSTEM
FOﬁ STRUCTURAL SYNTHESIS (PROSSS-2)
James L. Rogers, Jr.
NASA Langley Research Center

Hampton, Virginia

INTRODUCTION

The Programming System for Structural Synthesis (PROSSS), which
combines analysis and optimization techniques with applications to
structures, was first released to the public in December 1981 (refs. 1,2)
as the first step in a series of implementations. This first
implementation combined a finite element program for structural analysis,
SPAR (ref. 3) with a large general purpose optimization program, CONMIN
(ref. 4) and several small problem-dependent FORTRAN programs and
subroutines which must be written by the user to interface the analysis
and optimization programs. All of the programs were connected by a network
of control cards in the standard Control Data Corporation CYBER Control
Language (CCL, ref.5). Following implementations have included
distributing PROSSS between a mainframe and a minicomputer (refs. 6,7) to
take advantage of the best features of both computers, and incorporating
PROSSS entirely within the Engineering Analysis Language (EAL) computer
program to simplify the maintenance, control, and data management (ref.
8).

During training sessions with potential users of the first
implementation of PROSSS, it became apparent that the many files and

control cards involved in creating a PROSSS execution system, made the

system very complex and difficult for a new user to‘comprehend{ A much
simpler system, EAL-PROSSS, was available, but users would have to
purchase a copy of the proprietary EAL computer program in order to Qse
the system. Although SPAR lacks a number of the capabilities found in EAL,
it was decided to try and duplicate EAL-PROSSS using SPAR. This would
result in a much easier to use system where all of the components are in
the public domain. In addition, this system would not be restricted to the
CDC computers, but could be implemented on many computers since versions
of SPAR exist that are written completely in FORTRAN.

This paper describes this new implementation of PROSSS, hereafter
called PROSSS-2. The paper is divided into six major parts: (1) a
step-by-step approach for creating and executing PROSSS-2, (2) changes
made to SPAR to allow this implementation, (3) problem-independent code,
(4) SPAR runstreams, (5) problem-dependent code, aﬁd (6) combining new
processors into an absolute overlay. A final, less significant part
discusses how a user would employ other analysis and optimizationvprograms
in place of SPAR and CONMIN.

The purpose of this paper is to describe a new method for implementing
a flexible software system combining large, complex program with small,
user-supplied problem dependent programs into a single system. An
assumption is made that a potential user of PROSSS-2 has gained an
understanding of PROSSS by reading reférences 1-4, Identification of
commercial products in this report is used solely for describing the
system. The identification of these commerciai praoducts does not
constitute official endorsement, expressed or implied, of such products by

the National Aeronautics and Space Administration.

STEP-BY-STEP APPROACH FOR CREATING AND EXECUTING PROSSS-2
1. Create a reloacatable version of PROSSS-2 by combining the reloacatable
code from SPAR, modifications to SPAR, and the problem—independent
routines.
2. Test the model by coding the non-repeatable SPAR runstream and input it
into the standard version of SPAR for execution.
3. Code the repeatable SPAR runétreém. If Option 2.3 is to be used,
execute the program for generating analytical runstreams using the
non-repeatable and repeatable runstreams as input. Save the output
runstreams for future use.
4. Code and compile the problem-dependent routines such as the front and
end processors. If Option 2.3 is to be used, code a routine for chain
differentiation.
5. Create an absolute version of PROSSS-2 by combining the relocatable
version of PROSSS-2 with the relocatable code for CONMIN, the
problem-dependent routines, and the SPAR COM code.
6. Execute the absolute version of PROSSS-2 using the non-repeatable
runstream with datavinitializations added to AUS as input. Save Library 1
for future use.
7. Execute the absolute version of PROSSS-2 using the repeatable runstream
and Library 1 from step 6 as input.
8. If changes are required to the repeatable runstream, repeat steps 3 (if
Option 2.3 is used) and 7. If changes are required to fhe non-repeatable
runstream, repeat steps 3 (if Option 2.3 is used), 6 and 7. If changes are

required to the problem-dependent code, repeat steps 4, 5, and 7.

MODIFICATIONS TO SPAR

To incorporate PROSSS-2 into SPAR it was necessary to alter three
routines in SPAR. These routines include the main program and the drivers
for the DCU and AUS processors. Changes made to the main program allow
three new processors to be added to SPAR. These new processors, named
OPTD, ENDP, and DXDV, were added to the SPAR overlay by increasing the
array NP (NP is the number of processors) to 36 and adding the names of
the new processors to the DATA statement for NP. The new processor OPTD
calls the optimizer and the front processor for converting from
optimization to analysis. ENDP calls the end processor for converting from
analysis to optimization. DKDV computes. the factors used in a chain
differentiation for calculating the derivative of the stiffness matrix
with respect to the design variable.

A new subbrocessor was needed in DCU. This subprocessor called CLEAN
erases all data on a library. The code is based on the method of handling
scratch libraries in SPAR. Scratch libraries are created within a
processor and released upon exiting the processor. The FREE command in EAL
works similarly. The CLEAN command was needed because the optimization
process is iterative and the libraries tend to grow to exceed the
available disk space. Use of the COPY command in DCU should be kept to a
minimal because of the I/0 cosfs involved.

The new processor DKDV creates a data set called FACT DKDV 1 1 which
contains the factors used in the chain differentiation calculating the
derivative of the stiffness matrix with respect to the design variable. In
the original version of PROSSS, a FORTRAN program created a SPAR runstream

that was later executed to handle this calculation. In EAL/PROSSS the

factors were stored in registers after being retrieved from the data set.
Since these factors change in each iteration and PROSSS-2 does not exit
SPAR as the original PROSSS did; nor does SPAR have registers like EAL,
modifications had to be @ade to AUS. These modificatons affect the
subprocessor SUM in AUS. If this derivative is needed, such as for
analytical gradients, the SPAR runstream will contain a command for SUM in
AUS. The factor before each data set in SUM will be between 9901. and
9929.. The new code in AUS will subtract 9900. from each factor to
determine the location of the factor within the FACT DKDV data set. This
factor will then be substituted for the 9900, factor in the runstream and
the sum calculated. More details on this operation appear in a later

section.

PROBLEM~INDEPENDENT CODE

There are several new pieces of code that have been added to SPAR to
form PROSSS-2 which are problem-independent and therefore will not have to
be modified by the user as the problem changes. These codes contain
drivers for the three new processors, drivers for CONMIN, CONMIN, and a
subroutine for computing finite difference gradients. Table 1 lists all of
the problem-independent routines, their purpose, and the data sets they
use. Even though users will not have to modify these codes, it is
important that they have an understanding of how they work.

The driver for the new processor ORTD calls the CONMIN driver and the
front processor. In PROSSS-2 there are only three options available as
opposed to the five options in previous implementations. These options are

Option 1.1 (flowchart in figure 1) which uses a nonlinear programming

method with the gradients computed in CONMIN by finite differences, Option
2.2 (flowchart in figure 2) which uses a piecewise'line;r programming
method with the gradients computed external to‘CONMIN also by(finite
differences, and Option 2.3 (flowchart in figure'3) which élso uses a
piecewise linear programming method but the gradients are compdted
analytically external to CONMIN. Options 1.2 and, 1.3 which both use a
nonlinear programming method are not available in PROSSS-2 because
experience has shown that most users seldom use these two options. The
option number is stored in a data set created by the user and called OPT.
NO 1 1. The OPTD driver reads this data set and theﬁ branches to the set
of statements requifed to execute the desired option.

OPTD calls two subroutines for driving CONMIN. Theses subroutines are
CNMDRV1 and CNMDRV2. CNMDRV1 is used with Option 1.1 and CNMDRV2 is used
with Options 2.2 and 2.3. These subroutines~are similar to CONMS1 and
CONMS2 in PROSSS. There is only one other subroutine of interest that is
called by OPTD, that is the subroutine EVALNG. This subhoutine is iny
called by Option 2.2 and is used for computing finite difference
gradients. It is similar to the subroutine EVALS in PROSSS. The primary
difference between these subroutines in PR0SSS-2 and their counterparts in
PROSSS is that the subroutines in_PROSSS—Z pass data through SPAR
libraries, while those in PROSSS pass data through files.

The driver for the ENDP processor also depends on the optfon. If no
analytical gradients are required (Option 1.1 or 2.2)'then just the end
processor is called. The end processor subroutine is problem—dependent and
must be coded by the user. It is discussed in more detail in a 1étér

section. If analytical gradients are required (Option 2.3) then. another

b

problem dependent subroutine, DRVS, may be called before the end
processor. Whether or not DRVS is called depends on if the user needs to
convert forces and moments and the derivatives of forces and moments to
stresses and stress derivatives. The user must create a data set called
DRV CHEK 1 1 which is read by DRVS. A one (1) is placed in the data set if
DRVS is to be called, otherwise only the end processor is called.

The driver for the DKDV processor calls a subroutine to compute the
factors needed for the chain differentiation in calculating the derivative
of the stiffness matrix with respect to the design variable. This is
required when an element has more than one contributiné factor. An example
of a factor computed by this subroutine is DA/DV, the derivative of the
cross-sectional area with respect to the design variable. The subroutine

called by DKDV is problem-dependent and must be supplied by the user.

CREATING SPAR RUNSTREAMS FOR PROSSS-2

This section and the next are the most critical in terms of user
understanding when solving a problem with PROSSS-2. There are two areas of
code that must be developed to set up PROSSS-2 for solving a problem. The
first area is the SPAR runstream discussed in this section and the second
is the problem-dependent FORTRAN code to be added to SPAR discussed in the
next section. The SPAR runstream is divided into three'parts, the
non-repeatable part, the repeatable part, and a part specifically for
analytical gradients. For PROSSS-2 the non-repeatable and repeatable parts

are two separate and distinct steps.

Non-repeatable SPAR Runstream

The non-repeatable SPAR runstream has two functions. The first is to
set up the geometry of the model using the TAB and ELD processors. The
user should do this part first and execute SPAR with just these two
processors until satisfied that the model is correct. Processors PLTA and
PLTB can also be used at this point to aid’in verifying the model
geometry.

Once the user is satisfied with the model geometry, processor AUS can
be added to this runstream. This is different from the first
implementation of PROSSS, but is a spinoff from a method used in
EAL/PROSSS. The TABLE subprocessor in AUS is used to initialize variables
for later use in PR0OSSS-2. One drawback‘to using the TABLE subprocessor is
that it will not accept integer numbers, thus all values must be assigned
using a decimal. The problem-independent code will handle most of the
conversion to integer. The user must take care of this conversion if it is
needed in any problem-dependent code. These initialized variables are
stored in SPAR data sets on SPAR library 1. (Noﬁe: Library 1 should be
saved after the non-repeatable runstream has been executed) In general the
TABLE command is as follows:

| TABLE(NI=1,NJ=xxx); nl1 n2 n3 nl
J=1,xxx
values for data set separated by semi-colons
where
Xxxx is the number of vélues in the data set

nl n2 n3 n4 is the data set name

(Note: the ,xxx in J=1,xxX can be omitted if NJ=1)
EXAMPLE (set up the initial design variables)
TABLE(NI=1,NJ=3); DESV CNMN 1 1

J

]
—_
-
)

Table 2 lists all of the data set names, the number of values in each
data set, and the purpose of each data set input in the non-repeatable
runstream. TBD under the number of values for each data set means that
this number is problem-dependent and is to be determined by the user. The
data set names and NJ should not be changed for any data sets being used
by problem-independent code. An asterisk (*) before the data set name
implies that this data set is optional, depending on the user-supplied
problem-dependent code. The user can add or change any data sets required
for problem-dependent code. Unless otherwise indicated by an option number

in parentheses, each data set should be created for each option.

Repeatable SPAR Runstream

The repeatable SPAR runstream will be executed iteratively as in the
first implementation of PROSSS. Library 1, saved from the execution of the
non-repeatable runstream, is used as input. Typically, the SPAR repeatable
runstream will contain processors such as TOPO, E, EKS, K, INV, AUS, SSOL,
and GSF which are all discussed in detail in the SPAR reference manual.
The user can set up the repeatable runstream using just these processors
and append it to his non-repreatable runstream to make a complete run
through SPAR for testing. After this initial test, the two runstreams

should be kept separate.

The repeatable runstream must begin with an [XQT OPTD to call the
option driver, which in turn calls CONMIN and the front processor. The
repeatable runstream must end with an [XQT ENDP to call the end processor,
followed by an [XQT EXIT. The end processor checks to see if the
optimizaton process is complete or requires another iteration. If another
iteration is required, then the file (unit 5, the INPUT file for SPAR) is
rewound by the end processor and the repeatable runstream is executed
again from [XQT OPTD. If the optimization process is complete this file is
not rgwound and the [XQT EXIT command is processed and the repeatable part
is terminated.

The main difference between the repeatable part in PR0OSSS-2 and PROSSS
is that in PROSSS-2 no exit 1s made from SPAR during the entire iterative
process. In SPAR, when a data set is created with a name that is already
in the library, then the already existing data set is disabled and the new
data set is added to the library. Even though the data set is disabled the
data is not removed from the disk. In an iterative process, data sets with
identical names are created over and over again causing large amounts of
data to be stored on a disk. A FREE command exists in EAL which allows the
user to release and return disk space to.the host operating system. No
gimilar cohmand exists in SPAR, so it was added in the form of the CLEAN
subprocessor in DCU (described'above in section about modifications to
SPAR). Therefore DCU must be executed after GSF and before ENDP. In DCU,
certain large data sets which a-local to a particﬁlar iteration should be
disabled. This will reduce the I/0 costs when performing a COPY. The data
sets which should be disabled include KMAP, AMAP, all EFIL's, DEM DIAG, K

SPAR, INV K, APPL FORC, STAT DISP, STAT REAC, and any others that will be

10

recomputed in the next iteraton. After the DISABLEs, do a COPY 1,6 which
Wwill copy all enabled data sets from library‘1 to iibrary 6. Foliow this
with a CLEAN 1 which releases all space on the disk claimed by library 1.
Next is a DUPLICATE 6,1 which is an inexpensive method for duplicating all
data sets on library 6 (regardless of whether tﬁey are disabled or not)
back on to library 1. Finally a CLEAN 6 command is executed to clean up

the disk space for library 6. This command is followed by the [XQT ENDP.

Program for Generating Analytical Runstreams
In order to compute analytical grédients in Option 2.3, special
additions must be made to both the non-repeatable and repeatable
runstreams. These aadditions ére made using a supplied program called
GENRS. The user creates the non-repeaﬁable and repeatable runstreams just
as would be done for either of the other options.‘These runstreams are
then input to GENRS along with a file containing certain information about
the model. The non-repeatable runstream is input on unit 21 and the
modified non-repeatable runstream is output on unit 20. The repeatable
runstream is input on unit 30 and the modified repeatable runstream is
output on unit 31. Unit 5 is the filé containing information about the
model. The execution statemené,for,thié program should have the files in
the following order:
LGO(TAPES,TAPE21,TAPE20,TAPE30,TAPE31)
There is only one slight change that has to be maae td the
non-repeatable runstream'for this program. SPAR comment cards, $START and
$END are used in the ELD processor to offset the different elements used

as design variables. For example, a $START would appear immediately before

11

a E21 card in ELD and a $END wéuld appear immediately after the last
connection card for the E21 elements and immediately before a $START or
[XQT for a new processor. The ou;put médified rﬁnstream contains the
original non-repeatable runstream Qith modifications appended to the end.
These modifications include»the UPDATE mode of the TAB processor in which
all design variables are set to unity for computing the derivatives. All
of the data sets created ;o this point on library 1 are then copied over
to library 2. A pass is made through ELD, E, EKS, TOPO, and K to compute
the derivative of the mass matrix with respect to the design variable from
data set DEM DIAG and the derivative of the stiffness matrix with respect
to the design variable from data sep K SPAR. Processor DCU is used to
changé the name from DEM DIAG to DMDV DIAG O n and from K SPAR to DKDV
SPAR m n where n is the numbe of the design variable and m is degrees of
freedom from the‘SPAR_START card (not to be confused with the $START card)
squared. This data set is then copied to library 2.

If a design variable has more than one contributing factor theﬂ the
program handles them in a special way. First the number of the desién
variable is multiplied by 100, then the number of the contributing factor
is added to it to form a key for that design variable and its contributing
factor. Thus for the mass matrix, the name is changed to DMDV DIAG O key

and for the stiffness matrix the name is changed to TEMP SPAR m key .

- These data sets are used by AUS in the modified repeatable runstream in a

.chain differentiation to combine the contributing factors into a single

derivative for the stiffness an matrices.
EXAMPLE: Suppose afmodel has three elements contributing design

variables and the second set of elements from the three

12,

is the beam elements. Also suppose that the beams have
four contributing factors of which the cross-sectional
area is the third. Then the number of the beam design
variable is 2 which is multiplied by 100 to give 200
and the number of the cross-sectional area contributing
factor is 3 which is added to 200 to give 203. Thus 203
is the key for the cross-sectional area contributing
factor to the beams.

The modified repeatable runstream which is output from the program
contains the original repeatable runstream down through GSF with the
modifications appended to it. If needed, the modifications contain calls
to DKDV and AUS to perform a chain differentiation on design variables
with more than one contributing factor. After that processors AUS, SSOL,
and GSF are used to gompute displacement derivatives and the derivatives
of the stresses for each different design variable with respect to each
other design variable. Thus, for example, if there are three elemeﬁts with
design variables, then there will be nine (9) data sets created. The DCU
processor is used to again change the names from STRS Exy k n where Exy is
the element name (eg. E23), k is a new load case number, and n is the
number of the design variable. DCU is also used to store these data sets
onto library 1 for use by the end processor. The final part of the
original repeatable processor containing DCU with the DISABLEs, COPY 1,6,
CLEAN 1, DUPLICATE 6,1, CLEAN 6, [XQT ENDP, and [XQT EXIT are then

appended to the modificatons.

13

The input file to the program contain the following information about

the model input with a 6(I5) format:

NOLC - number of load cases

NODV - number of -design variables

ISNOLC - starting number for derivative load cases (eg. NOLC+100)
JOINTS - number of joints in the model

NDF -~ humber of degrees of freedom per joint (from START card)
NOEL - number of different elements

After this card there are two cards for each different element_(Z*NOEL
cards). The first card is input with a (1x,A3,1x,I13,1x,I3) format, while
the second has a format (21I3) These cards contain the following
information about the model:
CARD NUMBER 1 .
EL - names of elements containig design variables
NSECT - last section nuhber used for each design variable
NODVPE - number of design variables pér element
CARD NUMBER 2
NOOFDV - location of the design variables in the TAB cards

there are NODVPE of these per card

(eg. JO is the 6th location on a DSY card)

CREATING PROBLEM~DEPENDENT CODE FOR PROSSS-2
Two problem-dependent subroutines for the front and end processor must
“be created for PROSSS-2. A third'for chain differentiation may be

‘necessary if Option 2.3 is to be used. For these subroutines, blank common

14

is typically used as a work area. This space is set up with the statement
COMMON KORE,KEVEN,A(1)
The first two words of blank common, KORE and KEVEN, are reserved for SPAR
usage. The array, A(1) determines the address of the first word in blank
common. This method uses A as a dynamic array because the size is
determined by the field length.
LENGTH = FIELD LENGTH - FIRST WORD OF BLANK COMMON + 1
When using blank common in this fashion, the STATIC option must be used on
the CDC FORTRAN compiler to keep blank common at the upper end of the
memory space. If the user does not desire to use the STATIC option, but
still wishes to use blank common as a working space, the array in blank
common can be given a large dimension. Whichever method is selected, the
user can then set up a series of indices into the array. These act as

pseudo arrays for referencing the data. For example

IAX =1
IAG = IAX + NEL
IRFL = IAG + NCON

This example sets an index, IAX, for a pseudo array of design variables
and an index, IAG, for a pseudo array of constraints; IAX is the starting
point of the design variables in the blank common array and NEL locations
(number of elements) are reserved in the array for the design variables.
IAG is the starting point of the constraints in the same array and NCON
locations (number of constraints) are reserved in the array for the
constraints.

It is not required for the user to use the blank common area as a

working space. Regular arrays can be set up in the problem-dependent code

15

or a combination of blank common and arrays can be used. The drawback to
using arrays is that they will probably have to be changed in size if the
problem changes significantly, whereas the blank common indices changes
are dependent on the input data.

These subroutines interface with the SPAR data libraries by using the
SPAR data handling utilities (ref..9). If only one block of data is being
used at a time then only the DAL utiiity is required to input and ouput
data to and from the library. If more than one block is used to store the
data, then the RIO utility must be used in conjunction with DAL. Other

utilities are available for the user and can be used if desired.

Front Processor

The front processor must have the name FPDRIV because that is the the
name of the subroutine called by processor OPTD. If the user desires to
have more than one front processor for use with multiple problems then
FPDRIV can be used to call each individual front processor and the user
can set up a SPAR data set to determine which front processor is to be
used. This data set should be included in the non-repeatable runstream
along with other initialization daté sets described previously. The
purpose of the front processor is to use the design variables output from
CONMIN to update the section properties found in SPAR data sets. SPAR has
different data sets containing the section properties for different
elements. For example, BA BTAB 2 9 contains the section properties for the
beam elements. To determine the location of a particular section property
within a particular.data set consult reference 10.¥1

The front processor obtains the deéign variables from data set DESV

¥

16

CNMN 1 1. If the front processor needs certain data that is problem
dependent, then the user can create a data set similar to the FPRC CONS 1
1 data set in the discussion of the non-repeatable runstream. After the
code has been developed to use the design variables tq change the section
properties, then call DAL to update the element BTAB data sets being
change. It is easier to set up the code to change one set of elements

before moving to the next set.

End Processor

The driver for the end processor, ENDP, calls subroutine EPDRVNG when
no analytical gradients (Option 1.1, 2.2) are needed and calls subroutine
EPDRVG when analytical gradients are needed (Option 2.3). In addition,
ENDP may call subroutine DRVS to compute stress and stress derivatives
from forces and moments, and derivatives of forces and moments if they are
needed by Option 2.3. EPDRVNG and EPDRVG are used instead of only one call
to facilitate going from one option to another. The purpose of the end
processor is to convert data from the repeatable analysis to a form
suitable for input into CONMIN. Each of the above subroutines will be
discussed separately.

EPDRVNG is very simple to code. It requires the following data sets as
input:

EPRC CONS 1 1 (optioenal)

DESV CNMN 1 1

OBJF AUS 11

STRS Exy 1 1

CHEK DATA 1 1

17

EPRC contains constants that may be used in the end processor. Examples of
the constants are the allowable stresses for each different element and
the number of elements for each different kind. This data set is optional
and is only used by the end processor, therefore the name can be whatever
the user desires when it is initialized in the non-repeatable funstream.
DESV contains the design variables. OBJF contains the objective function
as it is calculated in the repeatable runstream (therefore the data set
name OBJF AUS 1 1 mustvbe used in the runstream). STRS Exy 1 1 are daﬁa
sets containing the stresses. The xy in Exy is the number of the element,'
for example E23 is for the rod elements. CHEK is used in conjunction with
the following code in any end processor independently of whether
analytical gradients are needed are not. This code tests the value in CHEK
and determines if another iteration is needed are not. If another
iteration is needed (CHEK=1) then the INPUT file is rewound, if not
(CHEK=0) then a RETURN is executed.

CALL DAL(1,11,CHEK,O0,3,KADR,IERR,NWDS,NE,LB,ITYPE,

1 YHCHEK, 4HDATA,1,1)

IF(CHEK.EQ.0.) RETURN

REWIND 5

RETURN
The end processor computes the constraints from the stresses. Two data
sets are used for output from the end processor and input to CONMIN. These
data sets are

G CNMN 1 1

OBJ CNMN 1 1

18

where G contains the constraints and OBJ CNMN contains the objective
function.

EPDRVG is more complex than EPDRVNG because in addition té’the
constraints and objective function, their gradients must also be computed.
The following input data sets used in EPDRVG are identical to those used
in EPDRVNG

EPRC CONS 1 1 (optional)

DESV CNMN 1 1

dBJF AUS 11

STRS Exy 1 1

CHEK DATA 1 1
In addition, there are other data sets required for input into EPDRVG.
These daéa sets are

INFO LOAD O ©

BLKI CNMN 2 O

DSTR Exy m n
There are fqur pieces of data the user will probably need from the INFO
data set. These are the number of load cases, the number of design
variables, the number of different types of elements, and a number
specifying where the numbering for load cases for the derivatives is to
start (this number is typically the number of load cases plus 100). The
only value needed from thé BLKI data set is the number of constraints
which will be the second value. DSTR Exy m n contains the stress
derivatives. The value of m is dependent on the load case number for the
derivatives, while the value of n is dependent on the number of the design

variable. Both are stored in the INFO data set. The_following output data

19

sets are almost identical (the 0 O folowing OBJ CNMN is the only .
difference) to those found in ‘EPDRVNG 4 ‘ |

G CNMN 1 1

OBJ CNMN 0 ©
In addition, the following data sets are also output by EPDRVG

OBJI CNMN 0 O

BLOK CNMN 1 1
OBJI contains én initial objectivé function used for iterating’within
CONMIN. BLOK contains the following block of data. The order df the data
is important and should not be adjusted. It is easiest to store these
values using the array in blank common.

1. The initial values of the design variables.

2. The initial value of the constraints.

3. The gradient of the objective function.

4, The gradients of the constraints.

A large portion of the DRVS subroutine should be adaptable to any
problem. DRV3S calls subroutine BMSTRS. DRVS uses the‘followihg data sets
which are also used as input by EPDRVG and FPDRIV

INFO LOAD 0 0

EPRC CONS 1 1

FPRC CONS 1 1
DRVS also uses the folldwing data sets as input

| ELTS NAME O ©
FAMS Exy 1 1
DFAM Exy m n

ELTS contains the names of the elements, such as E23. FAMS and DFAM are

20

the similar to the STRS and DSTR data sets discussed previously. The only
difference is that FAMS and DFAM contain forces and moments and their
derivatives while STRS and DSTR contain stresses and their derivatives.
The formats of the data sets are identical. DRVS is only used to convert
the data sets for elements where forces and moments are computed in the
repeatable analysis, for example E21 elements. Data sets for other
elements are not used in this subroutine. Data is read in from the FAMS
data set and subroutine BMSTRS is called to convert this data to stresses.
BMSTRS is dependent upon the elements being used. In BMSTRS, certain data
(such as the forces and moments, moments of inertia, and Y values) is
stored from the FAMS data set. Reference 10 can be used to determine where
this data is stored with respect to a particular data set. The stresses
that are calculated are then stored in the STRS Exy 1 1 data set which is
used by EPDRVG. The data sets from DFAM (one data set for each set of
elements) are then read and BMSTRS is called to compute the stress
derivatives in a similar fashion to the way the stresses were computed.
The stress derivatives are then stored on data sets DSTR Exy.m n which is
then used in EPDRVG. Thus the output data sets from DRVS are

STRS Exy 1 1

DSTR Exy m n

Chain Differentiation
This subroutine, DKDVSUB, is called from the new processor DKDV. The
name DKDVSUB must be used. The purpose of this subroutine is to compute
the factors for a chain differentiation to find the derivatives of the

stiffness and mass matrices with respect to a design:variable when the

21

design variable has more than one contributing factor. The actual chain
differentiation takes place in the AUS portion of the repeatable runstream
created by the GENRS program. An example of a factor that might be
computed in this subroutine is DA/DV, the derivativé of’the
cross-sectional area of a beam with respect té the design variable. Data
sets that are input to this subroutine depend upon the problem. Typically,
the following two data sets are input

FPRC CONS 1 1 |

DESV CNMN 1 1
FPRC contains the constant used in the front processor and DESV contains
the design variables. After the information in these data sets is used to
compute the derivatives, the derivatives a¢e written to data set FACT DKDV
1 1. This name must be used for the data set because the modified AUS

accesses the data set by this name.

CREATING AN ABSOLUTE EXECUTABLE FQR PROSSS-2

The following steps (figure 4) are used to create an new absolute
executable for SPAR adding the modified SPAR code, the problem-independent
code, and the problem-dependent code to the existing SPAR code. The
example is for use on the CDC computer, but>similar steps can be taken for
any other computeri The file names in parentheses correspond to the
listing below. To create the absolute executable the user will need six
files containing the relocatable code for SPAR (NRL15EG), the SPAR COM
decks (COM15EG), the modified SPAR routines (NPCHNGB), the
problem-independent routines (NPNDEPB), the problem~dependent routines

(NPDEPB), and CONMIN (CONMINB).

22

1. The COPYL command is used to replabe exisiting SPAR routines with the
modified routines with the results placed on a temporary file, ﬁPTEMP.

2. NPTEMP contains 460 records (one for each routine). These 460 records
are copied to file NEWPRS using the COPYBR command. The
problem-independent routines are then written to the NEWPRS file from
NPNDEPB using COPYBF. COPYBF is used here to place an EOF mark. Once this
NEWPRS file has been created it can be saved on disk so that steps 1. and
2. will not have to be executed again.

3. Libraries are created for the COM decks, CONMIN, and the
problem—-dependent routines using the LIBGEN command. These librariés are
used to satisfy any unsatisfied externals with the LDSET command. LDSET is
also used to preset core to zero and store the map listing on file NPMAP.

4, The LOAD command with the NOGO comhand is used to create the absolute
executable from file NEWPRS. The absolute code is stored on files named in
the overlay cards, SPAR and DCU. The REPLACE command is used to store the
files on a disk fo fuﬁure access. The stored files are called NPSPAR and
NPDCU.

GET,CONMINB,NPNDEPB, NPDEPB,NPCHANGB.
GET,COM15EG,NRL15EG.
COPYL,NRL15EG,NPCHNGB,NPTEMP, ,R.
REWIND,NPTEMPB.
COPYBR,NPTEMP,NEWPRS;UGO.

COPYBF ,NPNDEPB,NEWPRS.

SAVE,NEWPRS.

REWIND,NEWPRS.

LIBGEN,F=COM15EG, P=COMLIB.

23

LIBGEN, F=CONMINB, P=CONLIB.
LIBGEN, F=NPDEPB,P=DEPLIB.
RFL,106000.

REDUCE, -.
LDSET,LIB=COMLIB/CONLIB/DEPLIB.
LDSET, PRESET=ZERO,MAP=SBEX/NPMAP.
LOAD ,NEWPRS.

NOGO.

REPLACE,SPAR=NPSPAR,DCU=NPDCU.

USE OF OTHER OPTIMIZATION AND ANALYSIS CODES

PROSSS was originally developed to be flexible so thaﬁ any
optimization and analysis codes could be combined. Although this
particular implementation is limited to CONMIN for optimization and SPAR
for analysis, the user can adapt the concepts to other codes. If an
optimization code other than CONMIN is desired, The user can write a
driver similar to the problem-independent subroutine CNMDRVi. This routine
should initialize all variables by reading certain data sets and call the
optimization program. The optimization program will probably appear as a
"plack box"™ to the user, thus it can be added to the system as a library
to satisfy any unsatisfied externals in a manner.similar £o CONMIN for
this systém.

Because the entire system is dependent on the analysis code for this
implementation, the use of a different analysis code poses a more
challenging problem. To convert to a new analysis program, the user must

first determine what drives the program. In the casé of SPAR, it is driven

24

by runstreams cal;fng different processors and is thefefore very
modularized. If the desired analysis code is also in this format, then it
is only a matter of adding new processors to handle the optimization and
front and end processors. Since all of PROSSS-2 is iﬁ FORTRAN the primary
difference in using a new anélysis program forlthese processors is in the
way the processors interface with thg\data'base supplied by the program.
The majority of the remainder of the code shouldhbe used intact. Another
primary task is for the user to determine how to initialize the variables
for a problem. For this implementation, this was handled'through the SPAR
runstreams in the non-repeatable part. The final task is for the user to
develop a.program or programs that will generate whatever is needed in the
of code or input to handle the analytical gradients for optiQn 2.3. This
is not a trivial task. Program GENRS and subroutines DKDVSUB and DRVS can

be used as models.

25

REFERENCES
1. Sobieszczanski-Sobieski, J.; and Bhat, R. B., "“Adaptable Structnral
Synthesis Using Advanced Analysis and Optimization Coupled by a Computer

Operating System." A Collection of Technical Papers on Structures -

ATAA/ASME/ASCE/AHS 20th SDM Conference , April 1979, pp. 20-71, AIAA Paper

No. 79-0723.

2. Rogers, J. L., Jr., Sobieszczanski-Sobieski, J., Bhat, R. B., "An
Implementation of the Programming Structural Synthesis System (PROSSS)",
NASA TM 83180, December 1981,

3. Whetstone, W. D., SPAR Structural Analysis System Reference Manual -
System Level 13A. Volume I: Program Execution. NASA CR-158970-1, 1978.

4. vanderplaats, G. N., CONMIN - A Fortran Program for Constrained
Function Minimization. User's Manual. NASA TM X-62282, 1973.

5. NOS Version 1 Reference Manual - Volume 1, Publ. No. 60435400, Control
Data Corp., September 1979.

6. Rogers, J. L., Jr., Dovi, A. R., and Riley, K. M., "Distributing
Structural Optimization Software Between a Mainframe and a Minicomputer",
Presented at the Second International Conference and Exhibition on
Engineering Software, London, England, March 24-26, 1981. Proceedings

entitled Engineering Software II , Hobbs The Printers, Southampton,

England, 1981, pp. 400-415,

7. Rogers, J. L., Jr., "An Implementation of the Distributed Programing
Structural Synthesis System (PROSSS)", NASA TM 83253, December 1981.

8. Whetstone, W. D., "EISI~EAL: Engineering Analysis Language",

Proceedings of the Second Conference on Computing in Civil Engineering ,

26

ASCE, 1980, pp. 276~285.

9. Giles, G. L.; and Haftka, R. H., SPAR Data Handling Utilities. NASA TM

78701, 1978.

10. Cunningham, S. W., "SPAR Data Set Contents", NASA TM 83181, October
1981.

27

Routine: OPTD
Purpose: Controls flow through option

Option: All

Data Sets I/0 Purpose
OPT NO 11 I Option number
CHEK EVAL 1 1 I/0 Flag for performing finite differences (Opt. 2.2)
PASS CNMN 1 1 1/0 Iteration number through system '

Routine: CNMNDRV1
Purpose: Driver program for CONMIN

Option: 1.1
Data Sets I/0 Purpose
BLKR CNMN 1 1 I/0 Real data for CONMIN common block CNMN1
BLKI CNMN 1 1 I/0 Integer data for CONMIN common block CNMN1
PASS CNMN 1 1 1/0 Iteration number through system
VLB CNMN 1 1 I Lower bounds for design variables
VUB CNMN 1 1 I Upper bounds for design variables
ISC CNMN 1 0 I Linear constraint identifiers
DESV CNMN 1 1 1/0 Design variables
*CSAV CNMN 1 1 1/0 Data for CONMIN common block CONSAV
¥WORK CNMN 1 1 I/0 Data for blank common
*G CNMN 1 1 1 Constraint data from end processor
*A CNMN 1 1 I/0 Gradients of active or violated constraints
*IC CNMN 1 1 1/0 Active or violated constraints
*0BJ CNMN 1 1 1 Objective function from end processor
CHEK DATA 1 1 0 System terminator for convergence

Routine: CNMDRV2
Purpose: Driver program for CONMIN
Option: 2.2, 2.3

Data Sets I/0 Purpose
CNMN PARM 2 O I CONMIN parameters
BLKR CNMN 1 1 I Real data for CONMIN common block CNMN1
BLKI CNMN 2 0 I Integer data for CONMIN common block CNMN1
VLB CNMN 1 1 I Lower bounds for design variables
VUB CNMN 1 1 I Upper bounds for design variables
ISC CNMN 2 0 I Linear constraint identifiers
*¥BLOK CNMN 1 1 I Initial design variables and constraints with
gradients of constraints and objective function
from end processor
DESV CNMN 1 1 1/0 Design variables
*G CNMN 1 1 I Constraints from end processor
*0BJ CNMN 0 0 I Objective function from end processor
¥OBJI CNMN O 0O I Initial objective function from end processor
TEST OBJ 11 1/0 Convergence criteria for CONMIN
CHEK DATA 1 1 Q System terminator for convergence

28

Routine: EVALNG
Purpose: Compute finite difference gradients

Option: 2.2
Data Sets" 1/0 Purpose
EVAL PARM 1 1 I Step size change in design variables
BLKR CNMN 1 1 I Real data for CONMIN common block CNMN1
BLKI CNMN 2 O I Integer data for CONMIN common block CNMNt
PASS CNMN 1 1 I/0 Iteration number through system
DESV CNMN 1 1 1/0 Design Variables
¥BLOK CNMN 1 1 1/0 Initial design variables and constraints with
gradients of constraints and objective function
from end processor
*0BJ CNMN O O 1/0 Objective function
*OBJI CNMN O O I/0 Initial objective function
*G CNMN 1 1 I1/0 Constraints
*ICNT CNMN 1 1 170 Counter for finite difference iterations
CHEK EVAL 1 1 0 Flag for performing finite differences

Routine: ENDP
Purpose: Driver for calling end processor

Option: All
Data Sets I1/0 Purpose
OPT NO 11 I Option number
DRV CHEK 1 1 I Flag for converting forces and moments and their

derivatives to stresses and their derivatives
(Option 2.3)
Routine: DKDV .
Purpose: Compute factors used in chain differentiation
Option: 2.3
Data Sets: None
Table 1. - Problem-independent routines
I = Input O = Qutput I/0 = Input/Output
¥ = data set generated within system, not by user

29

DATA SET NAME NJ PURPOSE

PASS CNMN 1 1 1 Initializes the pass through CONMIN to 1

CHEK DATA 11 1 Initializes system terminator to 1

CHEK EVAL 11 1 Initializes flag for using finite differences to
1 (Opt 2.2)

OPT NO 1 Sets option number (ex. 23. for option 2.3)

TBD Contains constants needed for front processor
TBD Contains constants needed for end processor
TBD Sets lower bounds used in CONMIN
TBD Sets upper bounds used in CONMIN
TBD Sets starting values for design variables
12 Contains real parameters for CONMIN
(Note: DABFUN multiplied by .1 in CONMIN driver)

<3

r

v}

Q

=

=

=
—_— d) e e D
- b o e o aa

BLKI CNMN 1 1 15 Contains integer parameters for CONMIN (Opt 1.1)
BLKI CNMN 2 O 15 Contains integer parameters for CONMIN
(Opt 2.2, 2.3)

TEST OBJ 1 1 y Contains convergence criteria for CONMIN
- (Opt. 2.2, 2.3)

(Fourth value is the percentage for change
first three numbers are pseudo objective
functions which are updated in each
‘iteration, ex. 10.; 50.; 10.; .05)

CNMN PARM 2 0 4 Contains special values needed (Opt 2.2, 2.3)
1st-maximum number of active constraints
2nd-lower bound on change in design variable
3rd-upper bound on change in design variable
Yth-passes through limited analysis

EVAL PARM 1 1 1 Sets step size for change in design variable
(Opt 2.2)
DRV CHEK 1 1 1 Checks to see if forces and moments and their

derivatives need to be convertred to
stresses and their derivatives
0-no, 1-yes (Opt 2.3)

*INFO LOAD 0 O TDB Contains information used in subroutine DRVS
(Opt 2.3) .

ISC CNMN 1 O TBD Contains linear constraint identifiers for CONMIN
(opt 1.1)

Format for this data set is different from
others as follows

TABLE(NI=1,NJ=xxx); ISC CNMN 1 O

I=1

DDATA=0.

J=1,xxx"

0. .

ISC CNMN 2 0 TBD Contains linear constraint identifiers for CONMIN

(opt 2.2, 2.3) T
The format is the same as for ISC CNMN 1 O
except a 1. should appear after J=1,xxx

instead of a 0. DDATA remains the same.

TABLE 2. - Data sets containing initialized variables to be used in
non-repeatable part with the AUS TABLE subprocessor

30

——= CONMIN

Y

Front
processor

Y

Analysis

Y

Clean
library

Y

End
processor

FIGURE 1. - FLOW CHART FOR OPTION 1.1

31

———— 3

Finite

difference

Y

Front
processor

No

Y

Analysis |

Y

Clean
library

Y

End
processor

FIGURE 2. - FLOW CHART FOR OPTION 2.2

32

CONMIN

Pass = 1

Pass = 1 > QONMIN

Yes

Pass = 2 +

Analysis | Front regt—
processor

Y

Clean
library

Y

End
processor

33

FIGURE 3. - FLOW CHART FOR OPTION 2.3

Original SPAR Changes to SPAR

(NRL15EG) | | (NPCHNGB)
Modified SPAR - | Problem - independent code}.
{NPTEMP) | _ (NPNPEPB) o
v ' Libraries
Upgraded SPAR | EE——
(NEWPRS) CONMIN
* (CONMINB)
Problem - dependent code
Loader [== (NPDEPB)
* SPAR common decks
PROSSS-2 absolute { COMI5EG)

(NPSPAR, NPDCU)

FIGURE 4. - CREATING PROSSS-2

34

Report No. 2. Government Accession No. ’ 3. Recipient’s Catalog No

NASA. TM-86326

. Tutte end Subtitie 5. Report Date

November 1984
A New Implementation of the Programming System for L-G.Pmm"nMQCMwnuamncW“

Structural Synthesis (PROSSS-2) 505-33-53-12

Author(s) 8. Performing Organization Report No.

James L. Rogers, Jr.

10. Work Unit No.

. Perforrung Organization Name and Address

NASA Langley Research Center | 1. Contract or Grant No
Hampton, VA 23665

13. Type of Report and Period Covered

Sponsoring Agency Name and Address Techm’ca'l Memorandum

National Aeronautics & Space Administration : 18, Sponsoring Agency Code
Washington, DC 20546

. Supplementary Notes

_ gradients. These quantities are output in a format suitable for input into the

7

Abstiact

This new 1mp1ementat1on of the PROgramming System for Structural Synthesis (PROSSS-2)
combines a general-purpose finite element computer program for structural analysis,

a state-of-the-art optimization program, and several user-supplied, problem-dependent
computer programs. The results are flexibility of the optimization procedure,
organization, and versatility of the formulation of constraints and design variables.
The analysis-optimization process results in a minimized objective function, typically
the mass. The analysis and optimization programs are executed repeatedly by looping
through the system until the process is stopped by a user-defined termination criterion|
However, some of the analysis, such as model definition, need only be one time and
the results are saved for future use. The user must write some small, simple FORTRAN
programs to interface between the analysis and optimization programs. One of these
programs, the front processor, converts the design variables output from the optimizer
into a suitable format for input into the analyzer. Another, the end processor, re-
trieves the behavior variables and, optionally, their gradients from the analysis
program and evaluates the objective function and constraints and optionally their

optimizer. These user-supplied programs are problem-dependent because they depend
primarily upon which finite elements are being used in the model. PR0OSSS-2 differs
from the original PROSSS in that the optimizer and front and end processors have. been
integrated into the finite element computer program. This was done to reduce the
complexity and increase portab111ty of the system, and to take advantage of the data
handling features found in the finite element program.

Key Words (Suggested by Author(s})) l 18. Distnibution Statement

Optimization, finite element analysis -

‘ - Subject Category 61

19 Security Classif. (of this report) 20 Secunity Classif (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 35

Available: NASA's Industrial Applications Centers

